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A novel lattice Boltzmann thermal model is proposed for studying thermo-
hydrodynamics in incompressible limit. The new model introduces an internal en-
ergy density distribution function to simulate the temperature field. The macroscopic
density and velocity fields are still simulated using the density distribution function.
Compared with the multispeed thermal lattice Boltzmann models, the current scheme
is numerically more stable. In addition, the new model can incorporate viscous heat
dissipation and compression work done by the pressure, in contrast to the passive-
scalar-based thermal lattice Boltzmann models. Numerical simulations of Couette
flow with a temperature gradient and Rayleigler&fd convection agree well with
analytical solutions and benchmark data) 1998 Academic Press

I. INTRODUCTION

The lattice Boltzmann equation (LBE) method as a relatively new numerical scheme
recently achieved considerable success in simulating fluid flows and associated tran
phenomena [1]. Based on kinetic theory, the lattice Boltzmann method simulates f
flows by tracking the evolution of the single-particle distribution. In simulations of t
single-component, isothermal fluid flow, the lattice Boltzmann method was found to b
stable, accurate, and computationally efficient as classical computational methods [:
In addition, this method has been shown to be particularly useful in applications involv
interfacial dynamics and complex boundaries. Because the LBE method is intrinsical
mesoscopic approach based on simulating the evolution of the single particle distribu
the interparticle interaction can be naturally incorporated [6—9] and boundary conditi
with complex geometries such as those in porous media can be easily implemented
e.g., [10]).

Although promising, the current lattice Boltzmann method still has a few shortcomir
that limit its general application as a practical computational fluid dynamics tool. One
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these shortcomings, which is specifically addressed in this paper, is the lack of a satisfa
thermal model for heat transfer problems. In general, the previous thermal lattice Boltzn
models fall into two categories: the multispeed approach and the passive-scalar appr
The multispeed approach is a straightforward extension of the LBE isothermal mode
which only the density distribution function is used [11-13]. To obtain the temperat
evolution equation at the macroscopic level, additional speeds are necessary and the
librium distribution must include the higher-order velocity terms. Although this approa
has been shown to be theoretically possible [11], previous models suffer severe nume
instability and the temperature variation is limited to a harrow range [14]. Some recent w
may provide new directions for this type of approach [15,16].

The passive-scalar approach utilizes the fact that the macroscopic temperature sa
the same evolution equation as a passive scalar if the viscous heat dissipation and
pression work done by the pressure are negligible [17,18]. In a passive-scalar-based
thermal model, the temperature is simulated using a separate distribution function w
is independent of the density distribution. The main advantage of the passive-scalar
thermal model over its multispeed counterpart is the enhancement of the numerical sta
[17,18]. In addition, the accuracy of the passive-scalar model has been verified by se
benchmark studies [18,19]. Obviously, this approach will become more useful if the visc
heat dissipation and compression work done by the pressure can be correctly incorpc
into the model.

In this paper, we propose a novel thermal model for the lattice Boltzmann method wi
greatly improves the previous LBE thermal models. This new scheme is based on the r
discovery [20,21] that the LBE isothermal models can be directly derived by prope
discretizing the continuous Boltzmann equation in temporal, spatial, and velocity spa
Following the same procedure, an LBE thermal model can be derived by discretizing
continuous evolution equation for the internal energy distribution. The new scheme is sin
to the passive-scalar approach because it also uses an independent distribution func
simulate the temperature evolution. Its numerical stability is similar to that of the pass
scalar LBE thermal models. On the other hand, because the new scheme directly sim
the evolution of the internal energy, the viscous heat dissipation and compression work
by the pressure can be naturally incorporated.

The rest of the paper is organized as follows. In Section II, the new distribution funct
of the internal energy is introduced and its evolution equation in the continuous regin
derived from the Boltzmann equation. This evolution equation is then proved to recovel
desired macroscopic energy equation using the Chapman—Enskog expansion. In Secti
a new lattice Boltzmann thermal model is derived by discretizing the continuous evolu
equation for the distribution function of the internal energy. Section IV presents numer
simulations of two classical heat transfer problems, Couette flow with a temperature gra
and Rayleigh—Bhard convection. The results are compared with theoretical solutions
other computational results. A brief conclusion is given in Section V.

II. INTERNAL ENERGY DISTRIBUTION AND ITS EVOLUTION FUNCTION

Kinetic theory states that the evolution of the single-particle density distribution in a fl
system obeys the Boltzmann equation

af+ -V =q(f), 1)
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where f is the single-particle density distribution functighis the microscopic velocity,
andg is the collision term. Macroscopic variables, such as the depsiglocity u, and
temperaturdl, can be calculated as the moments of the density distribution function:

p:/fdf, @)

pu=/£fds, 3)
pDRT [ (£ - u)?

; =/ ST de. (4)

The collision term in the Boltzmann equation is very complicated and must be simplif
in practical calculations. One such simplification is to replace the collision term by a sing
relaxation-time BGK model [22]:

f — fed

af+¢ - vf=- (5)

v

Heret, is the relaxation time and®®is the Maxwell-Boltzmann equilibrium distribution

eq __ 4 _(E - U)2:|
= errmor e"p[ 2RT |’ ©

whereR is the gas constant aridl is the dimension.

Itis well known that, using the Chapman—Enskog expansion, the Boltzmann—-BGK ec
tion, Eq.(5), recovers the correct continuity and momentum equations at the Navier—St
level [23],

dp+ V- (pu) =0, ()
oldgu+ (U-V)Ul = -Vp+ V. -II, (8)

wherep= pRT is the pressure arld is the stress tensor,
II = pv(Vu 4+ uVv), 9)

where the kinetic viscosity is related to the relaxation time by= 7, RT.

However, the Boltzmann equation with the single-relaxation-time BGK model does h
one unsatisfactory feature: the energy equation obtained from the second monfent
yields a fixed Prandtl number, implying that the thermal conductivity cannot be adjus
independent of the kinetic viscosity [23]. Since we are interested in deriving a numer
scheme for general fluids with arbitrary Prandtl numbers, we choose not faasalculate
the internal energy or temperature.

Now let us introduce a new variable, the internal energy density distribution functior

(€ —u?
2

g= f. (20)

Notice that we defing using the real density distribution functiohinstead off in the
above equation. We cafl the internal energy density distribution function because tt
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integral ofg over the velocity space gives the internal energy densitfe = DRT/2 is
the internal energy.) From the Boltzmann equation, Eq.(1), the evolution equation of
internal energy density distribution function is

(€ —u?
2

g+ (§-V)g= Q(f) - fq, (11)

where the right-hand side of Eq.(11) is the heat dissipation term and
q=(&—-w-[du+ (& V)u]. (12)

Here we introduce a new collision model

g—g™

n2
E-W oy = , (13)
2 Tc

where

eq_ _PE—W? X%@—m?_ (19)
2(27 RT)D/2 2RT

We will further assume thaf in the last term of Eq.(11) can be replaced byAs we
will show next, these assumptions yield the correct macroscopic energy equation. Bec
Eq.(11) originates from the Boltzmann equation and describes the evolution of the inte
energy distribution, we will call it the Boltzmann energy equation.

In summary, we propose to use the following equations to study thermal hydra
problem:

. - £ _ feq
Btf+(£~V)f=—f Tf ,
__9-9" ¢
&g+ (E-V)g=— — f(€—u-[du+ (& V)u],
here
eq __ 10 _(E_U)Z
= (ZJTRT)D/ZeXp{ 2RT |’
eq_ PE—U)? X%@—m?
9 = 227RrT)DA 2RT |’

The macroscopic variables are calculated using

p=/f%,

pu= [efde.

»DRT
= [ace
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To better understand the Boltzmann energy equation, it is useful to examine the beh
of this equation in the long-wavelength and low-frequency limit. Following the Chapme
Enskog multiscale expansions, we expand the time derivatife-a& , + K23, +- - -, the
space derivative a8 = K V4, and the density distribution function ds= fe9+ Kf® +
K2f@ 4 ... The internal energy distribution function is similarly expanded as

g=0"+Kg® + K%g® +.... (15)

Here the Knudsen numbeK (the mean free path divided by the hydrodynamic lengt
scale), is assumed to be a small parameter. Notice thatrtbatindq are first order irk.
The reasom ~ K is thatq is proportional tau.

To distinguish the different thermodynamic processes, we furthergspliEq.(12) into
the following two terms:

q =%<§—u>-<—Vp+V~H>, (16)
Q" = (€ —u)(€ —u):vu. (17)

The first-order Chapman—Enskog approximation of Eq.(11) is

@
391+ (€ - VD™ = —gr— -

c

4. (18)
The integral of the above equation over velocity space leads to

0, (p€) + V1 - (pUe) = —pVy - U, (19)

which is exactly the macroscopic energy equation for Euler fluids. Notice thatepnly
contributes to the compression work done by the pressure on the right-hand side.
The second-order Chapman—Enskog approximation of Eq.(11) is

(%3]
awm+mfuevﬂ¢bz—%f—ﬂw, (20)
(o3

where
fO = —7, [0, F®4 Vi - (€9 (21)

is the standard first-order nonequilibrium deviation of the density distribution [3]. Sub:
tuting f from Eq.(21) andg™ from Eq.(18) into Eq.(20) and integrating Eq.(20) ove
velocity space, we have

d, (p€) = Vi- (pxVe) +11:Vu, (22)

where the first term on the right-hand side represents heat conduction and the seconc
represents viscous heat dissipation. The coefficieat(D + 2)tcRT/D is the thermal
conductivity. It should be pointed out that only affects the heat conduction term, while
g" only has an influence on the viscous dissipation term.



NOVEL LATTICE BOLTZMANN THERMAL MODEL 287

At this point, it is important to summarize the origins of three thermodynamic proces:
First, the heat conduction term exclusively results from the second term on the left-t
side of EQ.(20), which only depends on the nonequilibrium term ofitkernal energy
densitydistribution. Second, the viscous heat dissipation term results exclusively from
second term on the right-hand side of Eq.(20), which only depends on the nonequilibt
part of thedensitydistribution. Third, the compression work done by the pressure in Eq.(:
is independent of both nonequilibrium distributions.

Finally, combining Eqgs.(19) and (22), we can prove that Eq.(11) recovers the ent
equation at the Navier—Stokes level:

0t(pe) + d(pue) =V - (pxVe)+II: Vu— pV -u. (23)

Ill. LATTICE BOLTZMANN THERMAL MODEL

In the previous section, we derived the continuous evolution equation for the internal
ergy density distribution—the Boltzmann energy equation. Our ultimate goal, howeve
to develop a numerical algorithm which can be implemented on digital computers, bec
the analytical solution of Egs.(1) and (11) is extremely difficult if notimpossible. Our str
egy is to derive two discrete evolution equations: one equation for the density distribu
which governs the evolution of the density and velocity fields, and the other equatior
the internal energy distribution which governs the evolution of the temperature field. Si
the real density distributiorf will not be mentioned again, we will omit the tilde df
in the following text.

A. The Lattice Boltzmann Equation for Density and Velocity Fields

It has been shown recently [20] that the lattice Boltzmann equation describing mass
momentum conservation can be derived from the Boltzmann equation. In this paper
will extend that model to include an external force tefm,

Df f— fed
— =4+ VF=— L F, (24)
Dt T,
where
G-(£—
Fo G 6o (25)
RT

with G being the external force acting per unit mass [9]. Notice th&d&=0 and
J FedE=pG.

In most of the previous LBE models, the collision operator in the Boltzmann—BC
equation, Eq.(24), was assumed constant during each time step. This assumption introd
second-order truncation error in the lattice Boltzmann equation [24]. For the LBE isother
model, this truncation error was fortunately nondestructive because it can be totally absc
into the physical viscous term. The only effect is a change of the viscosity f;&i to
(r, — 0.58:)RT. (See [24] for more detailed discussions.)

For the thermal model, however, this second-order truncation error is no longer tri
Here, the viscosity is involved not only in the momentum equation but also in the ene
equation. To be specific, as shown in the previous section, the viscous heat dissip
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term in the energy equation exclusively comes from the nonequilibrium part of the den
distribution. This term only depends on the first-order Chapman—Enskog approximatic
the Boltzmann equation and is not affected by the second-order truncation error (which
appears in the second-order Chapman—Enskog expansion). In other words, the visco:
the viscous heat dissipation term is alway& T, which is inconsistent with the viscosity
in the LBE isothermal model mentioned above.

To eliminate this inconsistency, we adopt a second-order strategy to integrate
Boltzmann equation (24):

8
fX+E&8 & t+8) — F(X, &) :_2;

[F(X+ &8, & t+8) — FEUX+ &6, & t+80)]

v

28t [f(X, 53 t) - feq(x’ é’ t)]
7,

5 P
+§F(X+£3t,€,t+8t)+EtF(x,E,t). (26)

The left-hand side results from the integral of the time derivative; (£ - V), in Eq.(24).
To avoid implicitness of this scheme, we further introduce a new variable:

= St e 8t
f_f+2tv(f f &9 2F. (27)
The evolution equation fof is
. _ _ R _ fed _wRe
fX+E8, Et+8)— F(X, &) = - -|-O.58t[f(x’ & — X E D]+ 05
(28)

To obtain the lattice Boltzmann model, the velocity space must be discretized as v
As shown in [20], to recover the continuity and momentum equations at the Navier—Stc
level, the microscopic velocity space must be discretized to guarantee that the zeroth thr
third moments of the equilibrium density distribution are exact. Note that the exactnes
the fourth moment is not required here because the density distribution is only use
simulate the density and velocity fields. Expanding the Maxwell-Boltzmann equilibrit
distribution, Eq.(6), up ta?, the above criteria require the integral formula

[erem-chdc =t (29)

to be exact from zeroth to fifth ordém=0, 1, ...,5). For the two-dimensional case,
applying the third-order Gauss—Hermite quadrature leads to the nine-speed LBE mr
with the discrete velocities

0 a =0,
e, = { (cosfa — Dx/2], sin[(@ — D)mr/2])C «a=1234 (30

V2(cos[(a@ — 5)/2 + /4], sin[(@ — 5)7/2+n/4)c  «=5,6,7,8,

wherec = +/3RT.
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The macroscopic density and velocity can now be calculated using

p=> f. 31)

_ 68
pu=3ef, + 22 (32)

2

The discrete density distributiori,, satisfies the evolution equation

— — St — T, Fo 8t
f Si,t+68)—f (X, t) = ————[f (x, 1) — £89(x, t ————, (33
(X + &8, t 4 8) — f,(x, 1) rv+0.55t[“(x’ ) — £59x, )] A (33)
where
G- (e, —U)
Fop=——— > f59 34
RT o ( )
The equilibrium distributionf $9is given by
3e, - 9(e, -u)? 3u?
T P B S C R (35)

c? 2c4 2c2 |’

wherewg=4/9, w, =1/9 fora =1, 2, 3, 4, andw, = 1/36 fora =5, 6, 7, 8. Notice that
the third moment off 9 differs from its continuous counterpaﬁ§3f d¢, by a term with
an order ofu®. In the incompressible limit, this difference can be neglected.

B. The Lattice Boltzmann Equation for the Temperature Field

As shown in the previous section, if the Boltzmann equation can be properly discret
in the temporal and velocity spaces so that the resulting discrete equation satisfies the
and momentum conservation at the Navier—Stokes level, the final discrete scheme is e
the lattice Boltzmann equation for isothermal flow. The same procedure can be applie
the Boltzmann energy equation. The resulting discrete scheme will serve as the |z
Boltzmann thermal equation which describes the evolution of the macroscopic temper:
field.

Using the second-order temporal integration scheme, we integrate the Boltzmann et
equation, Eq.(11), in one time step:

g(X + €8t, £ﬂ t+ 8t) - g(X, 57 t)

1)
= —é [Q(X + €80, &, t 4 81) — Q%X + €8, €, t + 60)]

) I}
- Et f(X+ &8, &, QX+ €8, €. 1) — é[g(x, £.1) — g°Ux, &, )]
o)
- Et f(x & 1qX, &, 1). (36)

Similarly, to avoid implicitness, we introduce a new variable:

_ ) )
g=0g+-(g— g+ fq. (37)
27¢ 2
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The evolution equation fag is

X+ &8, &, t+8) —g(x. & 1)

— 8 eq
= m[g(x &1 -0 & 0] - mf(x £, 0)ax, & )d. (38)
Similarly, to derive a discrete scheme, the velocity space must be discretized appr
ately. Needless to say, it will be most computationally efficient if we can use the se
discretized velocities for both the mass density and energy density distributions in
LBE thermal model. To check whether this is possible, we first expand the equilibri
distribution of the internal energy density upué

(€ —u)?
eq _ €q
9" =Rt |
_LEXF(_ ¢ )[ ¢ +( ¢ _3)@
~ (2rRT)D/2 2RT)|DRT ' \DRT D/ RT
& €-w? AN
+(DRT )2(RT)2 (DRT_B)E]' (39)

As shown in Section Il, the recovery of the macroscopic energy equation involves the ze
through second moments of the equilibrium distribution of the internal energy density. S
the highest order of in Eq.(39) is fourth, the quadrature, Eq.(29), for the thermal mod
will need to be accurate to sixth order. This implies that the third-order Gauss—Herr
guadrature chosen in the previous section is no longer valid.

At first glance, it seems that a higher-order quadrature is necessary for the the
lattice Boltzmann equation. This apparent problem, however, can be avoided by regrou
Eq.(39):

o P o~ EN[E ¢ )£u+(§ w2 w2
(2r RT)D/2 2RT T DRT D 2(RT)2  2RT

DR
pe [( D+4) (& -u)?
* 2xRT)D p( 2RT> DRT D /2(RT)?
£ D+2\ u? (40)
_<DRT_ D >2RT}

Through some straightforward algebra, it can be proved that the zeroth- through sec
order moment of the second term of Eq.(40) vanishes. Consequently, this term ca
eliminated from Eq.(40) without affecting the recovery of the macroscopic energy equa
from the Boltzmann energy equation. The zeroth- through second-order moment of
remaining part of the energy equilibrium distribution involves only the zeroth- throu
fifth-order moment of Eq.(29). Therefore the third-order Gauss—Hermite quadrature is
valid. For the two-dimensional case, this leads to the nine-speed discrete velocity mq
Eq.(30). With this velocity discretization, the internal energy density can now be calcule
using

pe:Zg_a—%tZ fotqou (41)
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where
f +0.58, 894 0.58,7, F
fa — T 0t+ t o + t T ’ (42)
‘Eu+o.581
and
1
Oy = (6, — U) - ;(—Vp+V-H)+(ea—u)-Vu. (43)

The evolution equation fag, is
0o (X + &8¢, t + &) — g, (X, 1)

= _L N _ €4 e
= o, G0 D g D] - c+053 fo(x, DO (X, DS (44)

By adopting the third-order Gauss—Hermite quadrature, the discrete internal energy de
equilibrium distribution takes the form

eq  2p€U?
0T T3 ¢
eq ea s u)? u?
Oi3sa="g {15+ 15 o 1.5] (45)

(&, - u)? u?
gg%’7,8_36{3+6 = +45 = - 15—

Finally, the combination of Egs.(41), (44), and (45) constitutes the lattice Boltzme
thermal equation.

C. Discretization of the Physical Space

In the previous two sections, we derived the lattice Boltzmann thermal model by
cretizing the Boltzmann equation and the Boltzmann energy equation in temporal
velocity spaces. When implementing this model on digital computers, we must replace
continuous physical space by a series of grid nodes as well. Once the physical spe
discretized, starting from the known information at the grid nodes, we can calculate t
mohydrodynamical variables at the next time step using the evolution equations, Eqs
and (44).

Notice that the calculated distributions at the next time step using this procedure
not reside on the grid nodes. A reconstruction step is necessary to compute the inform
on the grid nodes. Theoretically, there are many options for this reconstruction step.
easiest one is to discretize the physical space into a regular lattice so that.guefye, 5t
is another grid node. This way, the information at all the grid nodes is automatically knc
at the next time step. This has been the practice adopted in previous LBE isothermal m
in which the lattice constant is chosen&s= cé;. For simplicity, in this paper, we will
continue to adopt this practice for our LBE thermal model. Furthermore, the character
speect is taken to be a constant values /3R Ty, WhereT is the average temperature.

D. Boundary Conditions

The hydrodynamic boundary conditions for the lattice Boltzmann method have b
studied extensively, and readers are referred to [1] for more details. In our study, we fc
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that the bounce-back rule of the nonequilibrium distribution proposed by Zou and He |
is particularly useful and can be easily extended to impose thermodynamic boundary
ditions. To understand the physical meaning of the bounce-back rule for the nonequilibi
distribution, we recall that in Grad’s “13-moment” system [27], the nonequilibrium dens
distribution can be written as

e e e o
fneq:feq<ﬂ.<£ WE-u S ‘”(1_ ) )> )
2pRT 2pRT (D +2)RT

wherell andS are the stress tensor and heat flux vector, respectively. Because the non
librium distribution itself is a small quantity, we can neglect all terms invol@) and
higher order. The leading term of the nonequilibrium discrete distribution becomes

II:e€, S-g, e
neq __ _ _ o
f= w“( 2(RT)2  2(RT)2 (1 (D + 2)RT>)' (47)

For isothermal problems, we neglect the heat transfer term, and the nonequilibrium de
distribution can be approximated by

. weIl : g8,
= R (48)
Obviously, the following hydrodynamic boundary condition holds:
f ;eq, iso_ § I;leq,iso; (49)

heree, andeg have opposite directions. This is exactly the bounce-back rule of the none
librium density distribution proposed by Zou and He [26].

For thermal problems, neglecting again all terms involvidgu), the nonequilibrium
internal energy density distribution can be approximately written as

) S-g, €
neq __ neq,iso__ _ o
9=t Ve 2R (1 (D + 2>RT>>' 0

This identity suggests the useful thermodynamic boundary condition
ned _ 9(21 fo?eq,isoz _ (ggeq _ e/ZS fﬂ[WeriS() i (51)

wheree, andeg have opposite directions. Notice that, since the density distribution in c
LBE thermal model does not take into account temperature variations, its nonequilibr
part satisfies the boundary condition, Eq.(49), and plays the ral&%8{°in the boundary
condition, Eq.(51).

IV. NUMERICAL SIMULATIONS

To test the new thermal lattice Boltzmann model, we have carried out numerical si
lations for Couette flow with a temperature gradient and for RayleighaBi convection.
For simplicity, we only carried out two-dimensional simulations although the extensior
three dimensions is straightforward.
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A. Couette Flow with a Temperature Gradient

Couette flow with a temperature gradient provides a good test of the ability of the
LBE thermal model to describe viscous heat dissipation. With the bottom wall fixed
the top boundary moving at the speed.fthe temperature profile must satisfy

T-To_y PEyl ¥y
Sy () -

whereTy andT; are the temperatures at the bottom and top boundaries, respectisetiye
distance from the bottom boundaty;is the height of the channel; Brv/x is the Prandtl
number; and Ee=U?/c, (T, — Tp) is the Eckert number. No external force is involved ir
this problem.

To evaluate the accuracy of the new LBE thermal model, we carried out simulations 1
wide range of both the Prandtl number and the Eckert number. Unless otherwise mentic
we used throughout our simulations the following parametérs:0.1c, H = 20, r, = 0.5,
and To = 1. All other parameters can be determined from the Prandtl and Eckert ni
bers. Periodic boundary conditions are used at the vertical boundaries, and the bou
conditions, Egs.(49) and (51), are applied at the top and bottom walls.

Figure 1a shows the results for£0.5 and Ec= 4, 20, and 40; Fig. 1b shows the results
forEc=8and P=0.25, 1.25, and 2.5. Analytic solutions are also included for compariso
As shown, the numerical results agree with the analytic solutions. The numerical err
within the machine accuracy. The product PrEc represents the ratio between the vis
dissipation and the heat conduction. Our simulations span a wide range of values of Pr
is clear that our new LBE thermal model successfully simulates the viscous heat dissip
over this wide range.

Simulations were also carried out to study thet., and temperature ranges applicabl
for the new LBE thermal model. The scheme was found to be accurate and stable for bc
andt. ranging from 0.001 to 10, and foT; — To)/ To ranging from 0 to 10. Compared with
the multispeed LBE thermal models [13], the parameter ranges and the numerical sta
are greatly increased.

B. Rayleigh—Bnard Convection

Another good benchmark test is Rayleiglerard convection, in which a horizontal layer
of viscous fluid is heated from the bottom while the top boundary is maintained at a lo
temperature. A static solution exists for this problem, with the velocity zero everywhere
the temperature a linear function of the vertical coordinate. However, when the temper:
between the top and bottom boundaries is increased above a certain threshold, the
conduction becomes unstable to any small disturbance and the system becomes conv

Most of the previous studies on Rayleighetird convection were carried out in the
framework of the Boussinesq approximation. With this approximation, all material prog
ties are assumed to be constant except for the temperature dependence of the density
gravity term. After absorbing the constant part of the gravity into the pressure, the effec
external force can be written as [28]

0G = ppo(T — Tm)j, (53)
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FIG. 1. Temperature profiles in Couette flow. The solid lines are the analytic results, while the symt
represent the LBE simulations. (a)®0.5, and (b) Ec=8.

where 8 is the thermal expansion coefficieny is the acceleration due to gravity,

is the average value of the top and bottom temperatures, and the unit yetdootes
the vertical direction opposite to that of gravity. The viscous heat dissipation is ne
ected.

To simulate Rayleigh—&iard convection using the Boussinesq approximation, we he
modified our LBE thermal model. First, we modified the model to be incompressible,
second, we deleted the viscous heat dissipation term. Details concerning these modific:
can be found in the Appendix.

Linear stability theory has shown that the critical wave number for Rayleighail
convection ik, = 3.117. This implies that the convection roll develops most readily in cel
with an aspect ratio of/2/ k. = 2.016. Since our computational grid is a square lattice, w
chose to use a channel with an aspect ratio of 2:1. The Prandtl number was fixed at 0.7
ensure the code works in the near-incompressible regime, wedixe®iTH = 0.1, where
AT isthe temperature difference between bottom and top wallgaathe channel height.
Unless otherwise mentioned, simulations were carried out on an4d0grid. Periodic
boundary conditions are applied to the side boundaries. The boundary conditions, Eqs
and (51), are applied at the top and bottom walls.
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As the first test, we calculated the critical Rayleigh numbeg, Rwhich the static
conductive state becomes unstable, where the Rayleigh number is defined as
_ BATgH?®
=
The simulation began from a perturbed static conductive state. The initial temperature
was given by

Ra (54)

TX,y)=To— AT%, (55)
and the initial pressure field was given by
AT 2
DX, y) = {1+ pﬂgoTy(l— %)] [1+0.001c0<%x>}, (56)

whereL is the channel width.

At Rayleigh numbers below Rathe perturbation dissipated and the maximum velocit
in the flow region gradually decreased to zero, while at Rayleigh numbers abgvih®a
maximum velocity eventually approached a finite value. The critical Rayleigh number
calculated by interpolating the growth rate of the maximum velocity at a slightly higt
Rayleigh number and the decay rate at a slightly lower Rayleigh number. The calculated
ical Rayleigh numbers are listed in Table | for various grids. The resultis well converged
the final Ra agrees with the value of Ra= 1707.76 obtained by linear stability theory [29].

Once the Rayleigh—-&iard convection is established, the heat transfer between the
and bottom walls is greatly enhanced. The enhancement of the heat transfer can be des
by the Nusselt number

Nu=1+ M (57)
XAT/H
whereuy is the vertical velocityAT is the temperature difference between the botto
and top wallsH is the channel height, ane represents the average over the whole flo
domain. Figure 2 shows the calculated relationship between the Nusselt number an
Rayleigh number. Also included are the simulation results by Clever and Busse [30]
shown, our results agree well with those by Clever and Busse for Rayleigh numbers
than 20,000. At higher Rayleigh numbers, the LBE simulation slightly underestimates
heat transfer. A similar trend was observed in the passive-scalar-based LBE study [1&

Typical temperature distributions and flow patterns of RayleigineéBd convection at

final steady states are plotted in Figs. 3 and 4 foe=Fg000, 10,000 and 50,000. As

TABLE |
Critical Rayleigh Number Obtained for Different
Grid Systems

Grid size Ra Error (%)

20x 11 1759.36 3.02

40x 21 1722.75 0.88

80x 41 1713.48 0.33
160x 81 1711.17 0.20
Theory 1707.76 —

Note.The error is calculated relative to the theoretical value.
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FIG. 2. The dependence of Nusselt number of Rayleigh number. Also included are simulation result
Clever and Busse [30], as well as the empirical formula=Nu56 (Ra/Ra,)%2°.

a

FIG. 3. The normalized temperatur€T — Tp)/AT in Rayleigh-Bnhard convection. (a) Ra5,000,
(b) Ra= 10,000, and (c) R& 50,000. A total of 21 equally divided contours, with an interval of 0.05, are plotte
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FIG. 4. Streamlines in Rayleigh-éiard convection. (a) Ra5,000, (b) Ra= 10,000 and (c) Ra 50,000.
The stream function is in units of,.,H. The interval between contour lines is 0.05.

shown, hot fluids near the bottom wall flow upward and increase the temperature in
central portion of the channel, while cold fluids near the top wall flow downward a
decrease the temperature near the side boundaries. When the Rayleigh number incr
two trends were observed for the temperature distribution: enhanced mixing of the hot
cold fluids, and an increase in the temperature gradients near the bottom and top bounc
Both trends enhance the heat transfer in the channel.

Numerical instability has been a primary concern in previous multispeed LBE ther
models. In this study, it was found that the main parameters affecting the numerical stal
are the relaxation times andz.. In the parameter range used in this study, the temperat
variation appears to have a minor effect on numerical instability. The lowest value for ei
7, Or 7 was around 0.08 in simulation of Rayleigheifi&rd convection. This value seems t
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be substantially higher than its counterpart in simulating the Couette flow with tempera
gradient, but it is comparable to the lower limit found in simulations of complicated flo
using LBE isothermal models[4,31]. In other words, our LBE thermal model has a numer
stability similar to previous LBE isothermal models. For this reason, we could simul
Rayleigh—Rfnard convection at Ra100,000 on a 8& 41 grid, while the highest Rayleigh
number that the multispeed LBE thermal model could achieve ona5bgrid was around
8,000 [14].

V. CONCLUSION

A novel lattice Boltzmann thermal scheme has been developed to simulate thermohy
dynamics. Derived from the kinetic theory, this new scheme has a firm physical foundat
The key point in the new scheme is the use of two sets of distributions: the density
tribution to simulate hydrodynamics and the internal energy distribution to simulate
thermodynamics. Compared with the passive-scalar-based LBE thermal models, the
scheme has the correct viscous heat dissipation and the correct compression work dc
the pressure. Numerical experiments have shown that the new scheme has a better st
than multispeed LBE thermal models.

APPENDIX: LATTICE BOLTZMANN THERMAL MODEL
FOR INCOMPRESSIBLE FLOW

In many applications, fluids are assumed to be incompressible and the viscous
dissipation is intentionally neglected. It will be useful to modify our LBE thermal model
account for these variations. Following [32], we take into account the fact that the fluctua
of the density is small for incompressible fluidsi1? with M being the Mach number). By
expanding the density around its average value, it can be proved that the density distrib
for the incompressible LBE model is the same except that the equilibrium distribut
becomes

3 3e,-Uu 9@, -u? 3u?
p + €y + (& -w* 3u° ’
0C? c? 2c4 2c2

9= w00 [ (AL)
wherepyg is the density which is constant. The presspireplaces the density as the primary
variable and it can be calculated as

2
D= % DA (A2)

To delete the viscous heat dissipation and compression work done by the pressure, rece
both terms exclusively come frog! in Eq.(12). Therefore, the LBE thermal model withou
the viscous heat dissipation and compression work done by the pressure is essential
same as the one derived in Section lll, except that the heat source term should only in
q'. Consequently, the heat source term in Eq.(43) is replaced by

1
O = (& —U) - %V'(—DHLH) . (A3)
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